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This paper deals with some infinitesimal aspects of Hamiltonian mechanics from 
the standpoint of synthetic differential geometry. Fundamental results concerning 
Hamiltonian vector fields, Poisson brackets, and momentum mappings are 
discussed. The significance of the Lie derivative in the synthetic context is also 
consistently stressed. In particular, the notion of an infinitesimally Euclidean 
space is introduced, and the Jacobi identity of vector fields with respect to Lie 
brackets is established naturally for microlinear, infinitesimally Euclidean spaces 
by using Lie derivatives instead of a highly combinatorial device such as P. Hall's 
42-letter identity. 

~ T R O D U C T I O N  

We know well that infinitesimals were vivid and active in the realm of 
analysis during the days of Newton and Leibniz and that they were rampant 
throughout the works of such pioneers in differential geometry as Cartan, 
Lie, and Riemann. The so-called e - ~ argument has made mathematics 
rigorous by eradicating infinitesimals relentlessly, so that the majority of 
contemporary mathematicians prefer to turn them down as anathema or, at 
best, to leave them in oblivion. 

Nowadays infinitesimals are coming back from mythology through two 
streams. One is nonstandard analysis, which is an application of model theory 
to analysis. For nonstandard analysis, the reader is referred, e.g., to Robinson 
(1966) and Stroyan and Luxemburg (1976). The other is synthetic differential 
geometry as championed by Lawvere, Kock, and others. Distinct from the 
former, it deals not only with invertible infinitesimals, but also with nilpotent 
ones. It gives a solid foundation to such once-dubious expressions as "vector 
fields are infinitesimal transformations." For synthetic differential geometry, 
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the reader is referred, e.g., to Kock (1981), Lavendhomme (1987), and Moer- 
dijk and Reyes (1991). 

As is well known, Newtonian mechanics has been transmogrified, by 
such great pioneers as Lagrange, Laplace, Hamilton, Jacobi, Poisson, etc., 
into analytical mechanics, which consists of two principal branches, namely 
Lagrangian and Hamiltonian mechanics. The former is based on variational 
principles and can be generalized readily into a general relativistic context. 
The latter is based on the energy concept and has a great deal to do with 
quantum mechanics. For classical texts on analytical mechanics, the reader 
is referred, e.g., to Goldstein (1980) and Whittaker (1961). 

Recently Hamiltonian mechanics has obtained a mathematically sophisti- 
cated arena, namely, symplectic manifolds, so that it could purport to be a 
branch of differential geometry. For Hamiltonian mechanics on symplectic 
manifolds, the reader is referred, e.g., to Abraham and Marsden (1978), 
Marsden and Ratiu (1994), and Puta (1993). The principal objective of this 
paper is to develop its rudiments from the standpoint of synthetic differential 
geometry. Synthetic Lagrangian mechanics will be discussed in a subse- 
quent paper. 

The organization of the paper goes as follows: The remainder of  the 
paper is divided into two sections. Consisting of six subsections, the first 
section is concerned with synthetic differential geometry and forms prerequi- 
sites for the second section, concerned with synthetic Hamiltonian mechanics. 
The leading two subsections of the first section are completely a review on 
the set R of real numbers and microlinear spaces as its generalization. The 
succeeding two subsections deal with vector fields and differential forms, 
both of which have been investigated at large in the literature. However, our 
coherent emphasis on the usefulness of Lie derivative in synthetic context 
seems fresh and worthwhile. In Section 1.3, to make the calculus of Lie 
derivatives legitimate, we should assume that the totality of vector fields 
forms a Euclidean R-module (dubbed "infinitesimally Euclidean"), for which 
Jacobi's identity of vector fields with respect to Lie brackets obtains naturally 
without resorting to such a highly combinatorial device as P. Hall's 42- 
letter identity. In Section 1.4 we prove Cartan's three magic formulas of Lie 
derivatives for differential forms synthetically. The remaining two subsections 
deal with a group G and its action on a microlinear space M, respectively. 
But that the group G is assumed not only to be microlinear, but also to 
be infinitesimally Euclidean; we could not even express the fundamental 
relationship between Ad and ad ("the differential of Ad is ad"). Section 2 is 
divided into three subsections. The first subsection deals with Hamiltonian 
vector fields on a symplectic space (M, to), which are shown to preserve 
Hamiltonians (i.e., the conservation of energy), to be canonical as infinitesimal 
transformations, and to constitute a subalgebra of the Lie algebra ~(M) of 
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vector fields on M. The second subsection deals with Poisson brackets. It is 
shown that the totality R M of functions on M is a Lie algebra with respect 
to Poisson brackets and that the assignment of its Hamiltonian vector field 
Xn to each function H: M ~ R is a homomorphism of Lie algebras, The 
third subsection deals with momentum mappings under the action of a group. 
They are shown to be an invariant under the action and to be infinitesimally 
equivariant. A fundamental construction of momentum mappings is also 
given. 

As is often the case in expositions of synthetic differential geometry, 
the reader should presume that we are working in a topos, so that the excluded 
middle and Zorn's lemma should be avoided. Moerdijk and Reyes (1991) 
construct toposes eligible for synthetic differential geometry (dubbed "smooth 
toposes"). Objects of the topos go under such aliases as a "space," a "set," etc. 

We are keenly aware that such important topics as Hamilton-Jacobi 
equations and Poisson manifolds are not even touched. They will be dis- 
cussed elsewhere. 

1. SYNTHETIC DIFFERENTIAL GEOMETRY 

Three textbooks on synthetic differential geometry are Kock (1981), 
Lavendhomme (1987), and Moerdijk and Reyes (1991). Lavendhomme 
(1987) is most suitable for this paper. If there is anything more than a hasty 
review of that book in this section, it is our consistent emphasis on the 
usefulness of the Lie derivative in the context of synthetic differential geome- 
try. This will be particularly so in our treatment of Jacobi's identity of 
vector fields. 

1.1. Real Numbers  

Whatever the set R of real numbers may be, it should be a commutative 
unitary ring at least. For R to have plenty of nilpotent infinitesimals coherently, 
synthetic geometers usually assume the following generalized Kock- 
Lawvere axiom: 

(1.1) For any Weil algebra W, the canonical R-algebra homomorphism 
W ~ R s~R~m is an isomorphism. 

For the definition of a Weil algebra, the reader is referred to Lavend- 
homme (1987, Chapter II, w 1). For some characterizations of a Weil algebra, 
see Moerdijk and Reyes (1991, Chapter I, 3.17). By way of example, 

W(n) = R[x~ . . . . .  xn]/(xixj)~<_i<_n,~<_j~_n 

is a Weil algebra, and Speca(W(n)) has the special notation D(n). In particular, 
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D(1) is usually denoted by D in the literature. Spaces of the form SpecR(W) 
for some Weil algebra W are called infinitesimal spaces. 

The generalized Kock-Lawvere axiom surely covers the following 
Kock-Lawvere  axiom as its origin. 

(1.2) The spaces R ~ and R 2 are isomorphic under the assignment (a, 
b) E R E ~ {(d,a + db) ld  E D} ~ R ~ 

The Kock-Lawvere axiom (1.2) is the fulcrum of synthetic differential 
calculus. Given any F E R R and any x e R, the function d ~ D ~ F(x + d) 
should be of the form d ~ D ~ a + db ~ R for unique a, b ~ R in virtue 
of (1.2), in which b is called the derivative of F at x and, following the 
standard notation, is usually denotedby F'(x), DF(x), etc. The Kock-Lawvere 
axiom enables us to develop differential calculus without limits and hopefully 
without tears, for which the reader is referred to Lavendhomme (1987, Chapter 
I). The following easy consequence of the definition is well known: 

(1.3) (FG)' = F 'G + FG' for any F, G ~ R R. 

This is the prototype of Jacobi's identity for Lie brackets of vector fields 
and Poisson brackets of functions, the former of which will be discussed in 
this section and the latter of which will be discussed in the next section. 
Since synthetic differential calculus is developed solely on the Kock-Lawvere 
axiom, it is natural that synthetic geometers should have introduced the notion 
of a Euclidean space, which is by definition an R-module subject to the 
following condition: 

(1.4) The spaces M ~ and M E are isomorphic under the assignment 
(x,y) ~ M 2 ~ {(d,x + dy) ld ~ D} ~ M ~ 

1.2. Microlinear Spaces 

By appropriately generalizing the generalized Kock-Lawvere axiom 
(1.1), synthetic geometers have introduced the notion of a microlinear space, 
which is by definition a space M abiding by the following condition: 

(1.5) For any good finite limit diagram of Weil algebras {W-~ Wx}, 
the induced diagram 

is a limit diagram. 

MSpecR(q~k) 

Recall that a finite limit diagram of R-algebras is said to be a good 
finite limit diagram o f  Weil algebras if every object occurring in the diagram 
is a Weil algebra and every morphism occurring in the diagram is a homomor- 
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phism of  Weil algebras (i.e., preserving maximal ideals), for which the reader 
is referred to Lavendhomme (1987, p. 55, "une bonne limite ~t gauche finie 
d'alg~bres de Weil"). What makes microlinear spaces a curiosity to the 
community of synthetic differential geometers at large is partly that the class 
of microlinear spaces is closed under finite limits and that the exponential 
of a microlinear space by any space is again microlinear, for which the reader 
is referred to Lavendhomme (1987, Chapter II, w Proposition 1). Since R 
is apparently microlinear, the above closedness of microlinear spaces under 
finite limits and exponentiation gives rise to microlinear spaces in abundance. 
Throughout the rest of  this section a microlinear space M is arbitrarily chosen 
and shall be fixed. We denote by Hom(M) and Iso(M) the set of functions 
from M to M and that of bijections from M onto M, respectively. 

1.3. Vector Fields 

In synthetic differential geometry a vector  f i e ld  on M can be seen from 
three distinct viewpoints. The most orthodox viewpoint is to regard it as a 
function X: M ---) M ~ assigning Xx ~ M ~ to each x e M with Xx(O) = x for 
any x ~ M. Another viewpoint, committing itself to the classical notion of  
an infinitesimal flow, is to reckon it as a function X: M • D --) M with X(x, 
0) = x for any x ~ M. The most radical viewpoint is to look upon it as a 
function assigning, to each d ~ D, an infinitesimal transformation Xd: M ---) 
M such that X0 is the identity transformation of  M. Throughout the remainder 
of this paper, unless stated otherwise, we will take the third viewpoint. 

We denote b y , ~ M )  the totality of vector fields on M. It is well known 
to be an R-module in the following sense: 

(1.6) 

(1.7) 

Given X e ~ ( M )  and a E R, aX is the vector field on M such 
that (aX)d = Xad for any d e D. 
Given X, Y ~ a~(M), there exists a unique function ~: D(2) --~ 
M M coinciding with X and Y on the axes. We define X + Y to 
be the vector field on M such that (X + Y)~ = ~(d, d) for any d 
~ D .  

In the remainder of  this subsection the space M is assumed to be infinitesi- 
mally Euclidean in the sense that the R-moduleA~(M) is Euclidean. Given X 

~ ( M )  and q~ e Iso(M), we denote by q~,X the vector field on M assigning, 
to each d ~ D, q0 o Xd o q~-l ~ Iso(M). Given X, Y ~ AffM), we denote by 
[X, Y] the unique vector field on M such that for any dr, d2 ~ D, [X, 
Y]d~d2 is Y-d2 o X-d~ ~ Yd2 o Xdr It will be shown below, by introducing and 
exploiting the notion of the Lie derivative L x Y  of a vector field Y on M with 
respect to another vector field X on M, that it is a Lie algebra over R, though 
the maxim itself is already well established in the literature of synthetic 
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differential geometry without assuming that M is infinitesimally Euclidean, 
for which the reader is referred to Lavendhomme (1987, Chapter III, w 
Proposition 7). 

The following useful proposition is quoted from Lavendhomme (1987, 
Chapter III, w Proposition 6). 

Proposition 1.1. Let X, Y ~ ~,~ffM). The mapping k: D(2) ~ Iso(M) that 
coincides with X and Y on the axes is given by 

• d') = Xd o Yd' = Yd' o Xd 

Given X, Y ~ ~(M),  we denote by L x Y  the unique vector field on M 
such that 

( X - a ) , Y  - Y = d L x Y  for any d ~ D 

The relation between L x Y  and [X, Y] is simple, as follows. 

Theorem 1.2. For any X, Y E ~ ( M ) ,  L x Y  = [X, Y]. 

Proo f  For any d, d' ~ D, we have 

( ( x - d ) . Y -  r%, 

= X - d o  r~, oXd - yd, 

= Y-d' o X -d  o Yd' o X d  (Proposition 1.1) 

= [X, Ylda, 

= (d [X ,  Yl)a, 

Therefore ( X - a ) . Y  - Y = d[X, Y] for any d E D, which is tantamount to 
saying that L x Y  = IX, Y]. �9 

With the above theorem in mind, we can say that the following theorem 
is none other than Jacobi's identity of vector fields in disguise. 

Theorem 1.3. For all X, Y, Z ~ ~ M ) ,  we have 

(1.8) Lx[Y, Z] = [LxY, Z] + [Y, LxZ]. 

Proof. It is easy to see that for any d ~ D, 

(X-d).[Y, Z] = [(X-d).Y, (X-d) .Zl  

Thus 

(X-d),[I ' ; ,  Z] - [Y, Z] 

= [(X_~),Y, ( X - d ) , Z ]  - [Y, Zl  

= [ d L x Y  + Y, d L x Z  + Z] - [Y, 2"] 

= d([LxY, Z] + [Y, LxZ])  
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Therefore Lx[Y, Z] = [LxY Z] + [Y, LxZ], as was expected. �9 

The reader should note that the proof of  the above theorem is no more 
difficult than that of (1.3). Now Jacobi 's  identity of  vector fields with respect 
to [. , .] is an easy consequence of the above theorems, as we will see just below. 

Theorem 1.4. The R-module,S(M) is a Lie algebra with respect to [-, "]. 

Proof. Aside from trivialities, it suffices to establish the following version 
of the Jacobi identity: 

(1.9) [X, [Y, Z]] = [[X, Y], 27] + [Y, [X, Z]] for all X, Y, Z E :~(M). 

Since IX, [Y, Z]] = Lx[Y, Z], [X, Y] = LxY and [X, Z] = LxZ by reason of 
Theorem 1.2, (1.9) is no other than a reformulation of (1.8) of  Theorem 
1.3. �9 

1.4. Differential Forms 

Let n and k be natural numbers with 1 <--- k --< n. For any "r ~ M ~ and 
any a E R, a/'r denotes the element of  M ~ such that 

(a/'r)(dl . . . . .  dn) = "r(dt . . . . .  adk . . . . .  dn) 

for any (dl . . . . .  dn) ~ DL 
The totality of  permutations of  numbers 1, 2 . . . . .  n is denoted by 

Penn(n). For any or ~ Penn(n) we denote by e~ the parity of  or, which is 
+ 1 or - 1 ,  depending on whether or is even or odd. Given x e M ~ and o- 

Perm(n), we denote by -r ~ the element of  M ~ such that 

C(dl ..... d~) = "r(do~i) ..... d,~(~)) 

for any (di . . . . .  dn) ~ DL 
An n-form on M is a function to: M ~ ~ R satisfying the following 

conditions: 

(1.10) to(a/x) = at~('r) for any a E R, any "r ~ M ~ and any k (1 <-- 
k<-n) .  

(1.11) to(~) = e~to('r) for any or e Perm(n) and any "r ~ M ~ 

We denote by An(M) the totality of  n-forms on M. In particular, A~ = 
R M. It is well known that An(M) is microlinear and Euclidean (Lavendhomme, 
1987, Chapter IV, w Proposition 2). The union of An(M)'s for all n ~ N is 
denoted by A(M). 

Given q~ ~ Hom(M) and to E An(M), we denote by q0*to the n-form 
on M such that 
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(~p*to)(-r) = to(cp o "r) 

for  any "r E M ~ Given  X ~ s and to ~ An(M), we  denote by  Lxto the 
n - form on M such that 

(Xd)*to - to = dLxto 

for any d e D. 
Given  X E ~ ( M )  and a" E M ~ we denote by X * a- the e lement  o f  

M ~ such that 

( X  * ' r ) (d l  . . . . .  dn+0 = Xdl('r(d2 . . . . .  dn+l) )  

for any (dl . . . . .  d.+l) e D "+l. Given  X e ~ ( M )  and to e A"+I(M), we  denote 
by ixto the n - form on M such that 

(ixto)('r) = to(X * "r) 

for any "r E M ~ 
We assume knowledge  of  the synthetic definit ion o f  exterior differentia- 

tion d (Lavendhomme,  1987, Chapter  IV, w What  we need about  d in this 
paper  is mere ly  that d 2 = 0 and the fol lowing.  

Mo~+ I Proposition 1.5. Let  to E An(M) and "r ~ . Then 

n+l  
(dto)('r) = ~ ( -  1)i+lDFi(O) 

i=1 

where  Fi(e) = to('ri(e)), with 

xi(e)(dl . . . . .  d .)  = a'(dl . . . . .  di-1, e, ai . . . . .  d.) 

Proof. See L a v e n d h o m m e  (1987, Chapter  IV, w Proposi t ion 4). �9 

Now we establish Car tan 's  three magic  formulas  relating d, i, L,  and 
[-, -]. The  first goes  as follows: 

Theorem 1.6. For  any X, Y E ~.~M), we  have 

Ltx, v 1 = L x L r  - L r L x  

Proof. Let  to ~ A(M).  For  any dl, d2 E D, we have 

l ( [ X '  ~ d 1 d2) * ~ - -  ~ = dld2Lix, rlto 

on the one hand. On the other hand, we have  

(IX, Yld,d2)*to - to 

= (Y-a2 o X-al ~ Ya2 o Xat)*to - to 
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= ( X d , ) * ( Y d 2 ) * ( X _ . ~ ) * ( Y _ d 2 ) * t o  - -  (o 

= ( X d , ) * ( Y , t ~ ) * ( X - d , ) * ( ( V - d 2 ) * ~  - t o )  

+ ( X d l ) * ( Y d 2 ) * ( ( X - d l ) * t o  - -  to)  + ( X d l ) * ( ( Y d 2 ) * t o  - -  tO) 

+ ( X a l ) * t o  - to  

= - d 2 ( X a l ) * ( Y a 2 ) * ( X _ a t ) * L r o )  - d t ( X d t ) * ( y a 2 ) * L x t o  

+ d 2 ( X a ~ ) * L v ( o  + d l L x t o  

= - - d 2 ( X d l ) * ( Y d 2 ) * ( ( X - d t ) * L v o  --  Lrto) 

- d 2 ( X d l ) * ( ( Y d 2 ) * L v o  - Llao) - d 2 ( ( X d t ) * L r o  - L#o) - d2Lvto 

- d l ( X d t ) * ( ( Y d 2 ) * L x o  - -  L x t o )  - d l ( ( X a l ) * L x o ~  - Lxco) - dlLxO 

+ d 2 ( ( X d l ) * L r t o  - Lvo)  + d2Lrto + dlLxto 

= d l d 2 ( X a ~ ) * ( Y a 2 ) * L x L r t o  - d t d 2 L x L r o  - d2Lvto - d l d 2 ( X a ~ ) * L r L x ~  

- dlLxto + d ~ d 2 L x L r t o  + d2Lvto + dtLxto 

= d l d 2 ( X a l ) * ( Y a 2 ) * L x L r o  - d t d 2 ( X a l ) * L r L x t o  

= d l d 2 ( X a l ) * ( ( Y a 2 ) * L x L v t o  - LxLrto) 

+ d l d z ( ( X a l ) * L x L r t o  - LxLrto) + d l d 2 L x L v t o  

- d l d 2 ( ( X a t ) * L r L x t o  - LrLxto) - dtd2LvLxo 

= d ~ d 2 ( L x L v t o  - LrLxo)  

Therefore Ltx, vlto = LxLvto - LrLxto, as expected. �9 

The following corollary of  the above theorem may be of  some interest. 

C o r o U a r y  1 . Z  For any co ~ A(M), any X, Y ~ ,.~(M), and any dl, d2 
D, we have 

( I X ,  Yld ,~ : )* to  - to = ( X d , ) * ( V d : ) * t o  - -  ( V d : ) * ( X ~ , ) * t o  

P r o o f .  This follows from the following calculation 

( IX ,  Yl~,d2)*to - 

= d ~ d 2 L t x , ~ t o  

= d l d 2 L x L v o )  - d t d 2 L v L x o ~  (Theorem 1.6) 
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= diLx((Yd2)*to - co) - d2Lr((Xdl)*to - co) 

= ( X d l ) * ( ( Y d 2 ) * O )  - -  (10) - -  ( ( Y d 2 ) * ( i )  - -  {.t)) 

-- (Yd2)*((Xdl)*to -- tO) + ((Xdl)*to -- to) 

= ( X d , ) * ( Y d 2 ) * t o  - -  ( Y ~ 2 ) * ( X d , ) * t o  �9 

The second of  Cartan's  three magic  formulas goes as follows: 

T h e o r e m  1.8. For any X, Y ~ , ~ M ) ,  we have 

itx, v 1 = L x i v  - i v L x  

P r o o f  For any to ~ A(M) and any d ~ D, we have 

ditx,},]to 

= ia[x, rlto 

= (Xa)*iv(X-d)*to - i r o  (Proposition 1.1) 

= (Xd)*iv((X-a)*to - to) + (Xd)*ivto - ivto 

= - d ( X d ) * i v L x t o  + d L ~ v t o  

= - d ( ( X a ) * i v L x t o  - ivLxto) - dirLxto + dLxivto 

= d(Lxivto - ivLxto) 

Since d is an arbitrary element o f  D, we can conclude that itx.~ q = Lxiv - 
ivLx, as expected. �9 

The last o f  Cartan 's  three magic  formulas goes as follows: 

T h e o r e m  1.9. For any X ~ ~ ( M ) ,  we have 

Lx = dix + ixd 

P r o o f  Let to e An(M) and -r ~ M ~ On the one hand, we have 

(Lxto)('r) = DG(0)  

where G(e) = to(Xe ~ x) for any e E D. On the other hand, we have 

(dix~o)('r) = ~ ( - 1 ) i + l D F i ( O )  
i = l  

(ixdto)('r) = DG(0) + ~ (-1) t ] )Fi(O) 
i = l  

where Fi (e )  = to(X * "r for any e ~ D with 

"~i(e)(dl . . . . .  dn - t )  = '~(dl . . . . .  d i - l ,  e, d i . . . . .  dn - l )  
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for any d l  . . . . .  dn-I e D. Therefore (Lxo~)('r) = (dixoJ + ixdco)('r), as 
expected. �9 

The proof of the following corollary of  the above theorem is standard. 

Corollary 1.10. For any X ~ A~M), dLx = Lxd. 

Proof. We have 

dLx = d(dix + ixd) (Theorem 1.9) 

= dixd 

= (dix + ixd)d 

= Lxd (Theorem 1.9) �9 

1.5. The Lie Algebra of  a Group 

Let G be a group which is microlinear and infinitesimally Euclidean. It 
shall be fixed throughout the remainder of this section. That G is a group 
means that it is endowed with the prodUct (g, h) ~ G X G ,-., gh e G, the 
unit element lo, and the inverse g E G ~ g- t .  Given g ~ G, we denote by 

~ g , ~ g ,  a n d ~  the functions h E G ~ gh ~ G, h ~ G ~ hg ~ G, and h 
G ~ ghg- l  ~ G, respectively. A vector field X on G is said to be left 

invariant if  ( ~ g ) , X  = X for any g E X. We denote by ~-~(G) the totality of 
left-invariant vector fields on G. It is easy to see that ~ ( G )  is microlinear 
and Euclidean. Since ( ~ ) , [ X ,  Y] = [(Sag),X, (Sag),Y] = [X, Y] for any g e 
G and any X, Y e ~ ( G ) ,  the R-module ~ ( G )  is a subalgebra of the Lie 
algebra AffG). 

We denote by a the totality of tangent vectors of  G at 1G. To put it 
another way, ,r is the set of  all functions ~: D ---> G with ~(0) = lo. We can 
see readily that ~ is an R-module in the following sense: 

(1.12) 

(1,13) 

Given ~ ~,r and a e R, a~ is the tangent vector of G at 1~ 
such that (aO(d) = ~(ad) for any d e D. 
Given ~, -q e ,~(M), there exists a unique function 4: D(2) --> 
M coinciding with ~ and -q on the axes. We define ~ + -q to be 
the tangent vector of G at 1~ such that (~ + "q)(d) = ~(d, d) 
for a n y d  ~ D. 

Tinging our third view of a vector field in Section 1.3 with the first 
one, we write, given X ~ ~ ( G ) ,  XIa for the tangent vector of G at 16 
assigning Xa(1G) to each d ~ D. It is easy to see that R-modules ~ ( G )  and 

are isomorphic under the mapping X e ~ ( G )  ~ Xla e # ,  so that ,~ is 
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also microlinear and Euclidean. Given 6, "q e ,~, we denote by [6, "q] the 
unique tangent vector of G at 1~ such that for any dl, d2 e D, 

 ](dla2) = 

Now we could mimic the whole discussion of Section 1.3 so as to show 
that~ is a Lie algebra with respect to [., -] just defined. First, as in Proposition 
1. l, the microlinearity of G implies readily: 

Proposition 1.11. Let 6, ~q ~ ~- The mapping h: D(2) --> M that coincides 
with ~ and "q on the axes is given by 

x(a, d ')  = ~(d)'q(d') = -q(d')~(d) 

Given g ~ G and "q ~ : ,  we denote by Adg'q the tangent vector of G 
at 1~ assigningJg-q(d) ~ G to each d e D. Just as Proposition 1.1 led to 
Theorem 1.2, Proposition 1.11 leads to the following theorem. 

Theorem 1.12. Given 6, "q E~ ,  we have 

Ad~(d)n - n = d[~, n] 

for any d ~ D. 

We could run this course to the end, but we now conclude this subsection 
simply by quoting the following theorem from Lavendhomme (1987, Chapter 
III, w Proposition 9). 

Theorem 1.13. The isomorphism X ~ ~q~(G) ~-. X~o ~ preserves Lie 
brackets, i.e., it satisfies the following condition: 

(1.14) [X, Y]IG = [XIG, Yto] for any X, Y ~ ~ ( G ) .  

Therefore :  is a Lie algebra over R isomorphic to ~-~(G). 

The reader should notice that the above theorem was established without 
assuming that G is infinitesimally Euclidean. 

1.6. The  Act ion o f  a Group 

Let G be a microlinear group, which shall be fixed throughout this 
subsection. An action of G on M is a function ~:  G • M ---> M complying 
with the following conditions: 

(1.15) ~ ( l o ,  x) = x for any x ~ M. 
(1.16) ~(g,  ~(h,  x)) = ~(gh, x) for any x E M and any g, h ~ G. 

In the remainder of this section an action �9 shall be fixed. Given g 
G, we denote by ~g the function from M to M such that d~g(X) = d~(g, x) 
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for any x ~ M. Given 6 e ~ ,  we denote by 6M the vector field on M such 
that 6M,d = CI)~(~) for any d ~ D and any x ~ M, where 6M,d is an alias for (6M)d- 

Theorem 1.14. For any g ~ G and any 6, qq e g ,  we have 

(1.17) (Ad~6)M = (~g),~M. 
(1.18) [6, "q]M = --[6M, "qM]- 

Proof. First we deal with (1.17). For any d E D, we have 

(Ad~6)u = (I)(Adg~)(d) 

= ~g~(a)~- l 

= ~# o qb~,~ o ~ - t  

= (~g),6M 

Now we deal with (1.18). For any dl, d2 ~ D, we have 

[6, ~q]M,ala2 = ~(a~(d2)~(-ao,~(-a2) 

= (I)~(dl) o (I)rl(d2) o (I~(_dl)  o (I) q(_d2) 

.~- 6M,d I o 7~M,d2 o 6M, -d l  o ~qM,-d2 

"~ [T~M, 6M]( -d2X-d l )  

= - [6M,  "qM]d,d2 

Therefore [~, "q]M = --[6M, XlM], as expected. �9 

2. S Y N T H E T I C  H A M I L T O N I A N  M E C H A N I C S  

2.1. Hami l ton ian  Vector  Fields 

A symplectic space is a pair (M, to) of  a microlinear space M and a 2- 
form to on M subject to the following conditions: 

(2.1) alto = 0. 
(2.2) For any 1-form cx on M, there exists a unique vector field X on 

M such that ixto = c~. 

A symplectic space (M, to) is arbitrarily chosen and shall be fixed 
throughout this section. A vector field X on M is called Hamiltonian if there 
exists a function H: M ~ R with ixto = dH, in which we write Xu for X, H 
is called a Hamiltonian function or an energy function for X, and the triple 
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(/14, to, H) is called a Hamiltonian mechanical system. The set of  all Hamilto- 
nian vector fields on M is denoted by ~'Ham(M, to). 

The following is an infinitesimal form of conservation of energy. 

Theorem 2.1. Let (M, to, H) be a Hamiltonian mechanical system. Then 
H o XH,d = H for any d E D, where Xn, d is an alias for (XH)  d. 

Proof. We have 

H o Hn,a - H = (Hn,d)*H - H 

= dLxHH 

= dixndlt 

= dix~lxnto 

= 0  �9 

Given a vector field X on M, a function F: M -4 R is called an integral 
for X if L x F  = 0. The above theorem implies that a function H: M --~ R is 
an integral for the vector field XH. 

A vector field X on M is said to be locally Hamiltonian if  Lxto = 0. 
This locution is justified by the following proposition. 

Proposition 2.2. Any Hamiltonian vector field on M is locally 
Hamiltonian. 

Proof. For any H: M -4  R, we have that 

Lxxto = (ixn d + dixH)to (Theorem 1.9) 

= dixHto 

= dd/-/ 

= 0  �9 

We denote by ~LHam(M, to) the totality of  locally Hamiltonian vector 
fields on M. The following is another conservation result in infinitesimal form. 

Theorem 2.3. A vector field X on M is locally Hamiltonian iff (Xd)*to 
= to for a n y d  ~ D. 

Proof. Since (Xd)*to -- to = dLxto, the desired result follows 
immediately. �9 

Given two symplectic microlinear spaces (M1, too and (M2, to2), a func- 
tion q~: M~ -4 M2 is said to be symplectic or canonical if q~*to2 = to~. The 
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above theorem states that transformations Xd (d ~ D) associated with a locally 
Hamiltonian vector field X on M are canonical transformations of  (M, to) 
onto itself. The following is its direct consequence. 

Corollary 2.4. I f  H: M --4 R is a function and X is a locally Hamiltonian 
vector field on M, then Xn o Xd = X(xd)*n for any d E D, where Xn and 
X(xd)*n are regarded as functions from M to M ~ 

Theorem 2.5. For any X, Y ~ ~'~LHam(M, to), [X, Y] ~ ~n~m(M, to). 

Proof. Since Lxto = Lvto = 0, we have 

itx3qto = Lxivto - irLxto (Theorem 1.8) 

= Lxivo 

= (dix + ixd)ivo (Theorem 1.9) 

= dixivto + ixdivo 

= dixivto + ix(Lr - ivd)to (Theorem 1.9) 

= dixivto 

Therefore the function ixivto on M is eligible to be a Hamiltonian function 
for the vector field IX, Y]. �9 

Corollary 2.6. ~Ham(M' to) is a subalgebra of  the Lie algebra A~(M), 
and YHam(M, to) is an ideal of  the Lie algebra a~LHam(g , to). 

2.2. Poisson Brackets  

Now we discuss Poisson brackets. Given two functions F, G: M --> R, 
their Poisson bracket {F, G} is defined to be ixaixFto. 

Proposition 2.7. I f  X is a locally Hamiltonian vector field on M and F, 
G: m ---> R are functions, then (Xd)*{F, G} = {(Xd)*F, (Xd)*G} for any d ~ D. 

Proof. Follows f rom Theorem 2.3 and Corollary 2.4. �9 

Proposition 2.8. For any functions F, G: M ---> R, we have 

{F, G} = - L x e G  = Lx~F 

Proof. We have 

{ F, G } = ixcix#o 

= ix~dF 

= LxcF (Theorem 1.9) 
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Therefore {F, G} = LxcF. Since ixcixFto = -ixrixGto, the other desired 
equality {F, G} = -LxFG follows similarly. �9 

The above theorem implies directly the following result. 

Corollary 2.9. Let F, H be functions from M to R. Then F is an integral 
for the vector field X• iff H is an integral for the vector field Xr. 

Our proof of the following theorem, which gives Jacobi's identity of 
the Poisson bracket {., �9 } as a direct consequence, is literally infinitesimal 
and synthetic. 

Theorem 2.10. For any functions F, G, H: M ~ R, we have 

LxH{F, G} = {LxH F, G} + {F, LXH G} 

Proof. We have, on the one hand, that 

(XH,d)*{F, G} - {F, G} = dLxH{F, G} 

We have, on the other hand, that 

(XH,d)*{F, G} - {F, G} 

= {(Hn.a)*F, (Xn,a)*G} - {F, G} 

= {dLxnF + F, dLxnG + G} - {F, G} 

= d({LxHF, G} + {F, LxHG}) 

desired equality follows. �9 Therefore the 

(Proposition 2.7) 

Theorem 2.11. The R-module R M is a Lie algebra over R with respect 
to the Poisson bracket {-, �9 }. 

Proof. It is almost obvious that the function (F, G) e R ~t • R M ~ {F, G} 
is skew-symmetric and bilinear. Thus it remains to establish Jacobi's identity: 

(2.3) { {F, G},H} = { {F,H}, G} + {F, {G,H}} forany F, G , n  ~ R M. 

This follows from the following calculation: 

{{F, G}, H} 

= Lxn{F, G} (Proposition 2.8) 

= {LxnF, G} + {F, LxnG} (Theorem 2.10) 

= { {F, H}, G} + {F, {G, H} } (Proposition 2.8) �9 

Now we show that the mapping F E R M ~ Xr e ~ (M)  is an anfihomo- 
morphism of Lie algebras, which would be an easy consequence of Theorem 
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2.11 if we were generally entitled to identify :~(M) with the derivations of 
R M [cf. Marsden and Ratiu (1994, Proposition 5.5.4)1. 

To this end we need the notion of the Poisson bracket { et, 13 } of 1-forms 
or, 13 and its fundamental properties. Given a 1-form a on M, we write oL # 
for the unique vector field on M such that i~#co = or. The condition (2.2) 
guarantees that the mapping et ~ At(M) ,-. ot # ~ ~ (M)  is bijective with the 
inverse mapping X e ~(M)  ~ ixto ~ At(M). Given two 1-forms or, 13 on 
M, their Poisson bracket {c~, 13} is defined to be the 1-form -it~,~#lto. The 
R-module At(M) inherits a Lie algebra structure from that of~ffM), as we 
see in the following theorem. 

Theorem 2.12. The R-module At(M) is a Lie algebra over R with respect 
to the Poisson bracket {-, �9 }. 

Proof. It is almost obvious that the function (c~, 13) E A](M) • A1(M) 
~, {et, 13} is skew-symmetric and bilinear. Thus it remains to establish 
Jacobi's identity: 

(2.4) {{ot, 13},~/} = {{et, qt},13} + {et, {13,~/}} foranyot, 13,~/~ AI(M). 

This follows from 

{{oL, 

the following calculation: 

13), ~l 
{ -i(~#,~#]oJ, ~/} 

i[[a#,13#],-,/#]tO 

{{o~, "/ / ,  131 + {~, {13, 3'}1 
Theorem 2.13. Let or, 13 ~ AI(M). Then 

{or, 13} = -L~,13 + L ~  + di~#i~#to 

Proof. This follows from the following calculation: 

{a, 131 
= --i[a#,p#)~ 

= i~L~#~ - L~i~#oJ (Theorem 1.8) 

= ia#(di~* + i~#d)to - L~#13 

= i ~ d i ~ o ~  - L.#13 

= ( L ~ #  - d i a # ) i ~ # t o  - L~#13 

= L~#i~#o~ - di~#i,~#co - L,:13 

= L~#a + di,~#i~#o~ - L,:13 �9 

(Theorem 1.4) 

(Theorem 1.9) 

(Theorem 1.9) 
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Theorem 2.14. Let F, G e R M. Then d{F, G} = {dF, riG}. 

Proof. This follows from the following calculation: 

{dE, dG} 

= -LxrdG + Lx~dF + dix~ixcto (Theorem 2.13) 

= - d ( L x r G  - Lx~F - ixFix~to) (Corollary 1.10) 

= - d ( - { F ,  G} + {F, G} - {F, G}) 

= d{F, G} �9 

Now we are ready to establish the following. 

Theorem 2.15. For any F, G e R M, XIF.O} = - [Xr~c]  

Proof. This follows from the following calculation: 

XIF,~ } = (d{F, G}) # 

= {dF, riG} # (Theorem 2.14) 

= - [ x r ,  x~]  �9 

2.3. Momentum Mappings 

Let G be a microlinear, infinitesimally Euclidean group with its Lie 
algebrap, which shall be fixed throughout this subsection. We denote b y :  * 
the R-module of  all homogeneous functions from~ to R. For any g ~ G, 
we write Ad* for the function f rom~* to itself assigning, to each X e,r  
the function ~ e ~  ~ x(Adg~) ~ R. 

An action �9 of G on M is called a symplectic action of  G on (M, to) if 
~g is a symplectic transformation of  (M, to) for all g e G. Given a symplectic 
action of G on (M, to), a mapping J: M ---)~ * is called a momentum mapping 
for the action provided that the mapping J : :  ---) R M defined by 3(~)(x) = 
J(x)~ is linear and that Xjt~) = ~M for every ~ E~.  The momentum mapping 
J is said to be Ad*-equivriaent if the diagram 

(I)g 
M ) M  

,1 t, 
,~* ) 9 "  

Ad*_ I 

is commutative for every g e G. 
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The following conservation law is undoubtedly fundamental. 

Theorem 2.16. Let ~ be a symplectic action of G on (M, to) with a 
momentum mapping J. Assume a function H: M ---> R to be invariant under 
the action in the sense that 

(2.5) H ( ~ g ( x ) )  = H(x) for any x ~ M and any g E G. 

Then J is an integral for Xn in the sense that: 

(2.6) Lxn3(O = 0 for any 6 E,~. 

Proof. The condition (2.5) implies that dL~tH = (~(d~)*H -- H = 0 
for any d ~ D, from which we conclude that Lo f t - /=  0. Since 6M = XJ(0. 
Corollary 2.9 implies (2.6), as was desired. �9 

The following theorem gives a fundamental means to construct momen- 
tum mappings. 

Theorem 2.17. Let �9 be a symplectic action of G on (M, to). Assume 
the form to to be exact in the sense that to = - d O  for some 1-form 0 on M. 
Assume also the action to leave 0 invariant in the sense that (~g)*0 = 0 for 
any g E G. Then the function J: M ---->~ * defined by 

(2.7) J(x). 6 = (i~0)(x) for any x E M and any 6 e,~ 

is an Ad*-equivariant momentum mapping for the action. 

Proof. Since the action �9 leaves 0 invariant, d L ~ 0  = (dp~(a))*0 - 0 = 
0 for any 6 e ~  and any d ~ D, which implies that L ~ 0  = 0. Since L~u = 
i ~ l  + d i ~  by Theorem 1.9, 

d J(6) = di~wO = - i ~ O  = i ~ o  

which implies that J is a momentum mapping for the action. The Ad*- 
equivariance of J follows from (1.17) of Theorem 1. I4. �9 

Theorem 2.18. Let @ be a symplectic action of  G on (M, to) with a 
momentum mapping J. If J is Ad*-equivariant, then 3([6, "q]) = {J(0,  J('q)} 
for any 6, "q ~,~. 

Proof. Since J is Ad*-equivariant, 

(2.8) (I)g*J('q) = J(Adg-l~q) 

for any g ~ G. Therefore 

(2.9) (I)~j(n) - ) (n)  = 3(Ad(~a)-Ixl) - J(n)  
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for any d ~ D. For the left-hand side of (2.9) we have 

= - 3 ( 0 )  

= - 3 ( . q )  

= d L x j < j ( ~ )  

= - d { J ( 0 ,  J(-q)} (Proposition 2.8) 

For the right-hand side of (2.9) we have 

J(Ad(~)-, ~q) - J('q) 

= 3(Ad(_o.~q) - 3('11) 

= -dJ([~, "q] )  [(1.18) of Theorem 1.14] 

Since d e D is arbitrary, we can conclude that 3([~, "q]) = {)(~), 3('q)}, as 
was desired. �9 
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N O T E  A D D E D  IN P R O O F  

(1) The notion and the assumption of infinitesimal Euclideaness such 
as seen in Section 1.3 are redundant by dint of Proposition 4 of  w and 
Proposition 1 of w of Lavendhomme (1987, Chapitre Ill). 
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